91
Role of Endophytes, Plant Growth Promoting Rhizobacteria
Hashem, A., Allah, E. A., Alqarawi, A. A., Wirth, S., & Egamberdieva, D., (2016). Comparing
symbiotic performance and physiological responses of two soybean cultivars to arbuscular
mycorrhizal fungi under salt stress. Saudi J. Biol. Sci., 26, 38–48.
Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I., (2010). Soil beneficial bacteria and
their role in plant growth promotion: A review. Ann. Microbiol., 60, 579–598.
Hilleary, R., & Gilroy, S., (2018). Systemic signaling in response to wounding and pathogens.
Curr. Opin. Plant Biol., 43, 57–62.
Ilangumaran, G., & Smith, D. L., (2017). Plant growth promoting rhizobacteria in amelioration
of salinity stress: A systems biology perspective. Front. Plant Sci., 8, 1768.
Jaemsaeng, R., Jantasuriyarat, C., & Thamchaipenet, A., (2018). Molecular interaction
of
1-aminocyclopropane-1-carboxylate
deaminase
(ACCD)-producing
endophytic
Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv.
KDML105. Sci. Rep., 8, 1950.
Jiang, Q. Y., Zhuo, F., Long, S. H., Zhao, H. D., Yang, D. J., Ye, Z. H., Li, S. S., & Jing, Y.
X., (2016). Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of
Lonicera japonica grown in Cd-added soils? Sci. Rep., 6, 21805.
Jin, H. Q., Liu, H. B., Xie, Y. Y., Zhang, Y. G., Xu, Q. Q., & Mao, L. J., (2017). Effect of the
dark septate endophytic fungus Acrocalymma vagum on heavy metal content in tobacco
leaves. Symbiosis, 74, 89–95.
Joe, M. M., Islam, M. R., Karthikeyan, B., Bradeepa, K., & Sa, T., (2012). Resistance responses
of rice to rice blast fungus after seed treatment with the endophytic Achromobacter
xylosoxidans AUM54 strains. Crop Prot., 42, 141−148.
Kaldorf, M., Kuhn, A., Schröder, W., Hildebrandt, U., & Bothe, H., (1999). Selective element
deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal
fungus. J. Plant. Physiol., 154, 718–728.
Kasim, W. A., Osman, M. E., Omar, M. N., Abd El-Daim, I. A., Bejai, S., & Meijer, J., (2013).
Control of drought stress in wheat using plant growth-promoting bacteria. J. Plant Growth
Regul., 32, 122–130.
Kaya, C., Higgs, D., Kirnak, H., & Tas, I., (2003). Mycorrhizal colonization improves fruit
yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-
watered and water-stressed conditions. Plant. Soil., 253, 287–292.
Kelkar, T. S., & Bhalerao, S. A., (2013). Beneficiary effect of arbuscular mycorrhiza to
Trigonella Foenum-Graceum in contaminated soil by heavy metal. Res. J. Recent Sci., 2,
29–32.
Kim, S. J., Eo, J. K., Lee, E. H., Park, H., & Eom, A. H., (2017). Effects of arbuscular
mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology., 45, 20–24.
Kumar, A., Patel, J. S., Meena, V. S., & Ramteke, P. W., (2019). Plant growth promoting
rhizobacteria: Strategies to improve abiotic stresses under sustainable agriculture, J. Plant
Nutr., 42, 1–15.
Kumar, M., (2013). Crop plants and abiotic stresses. J. Biomol. Res. Ther., 3, 1.
Lata, R., Chowdhury, S., Gond, S. K., & White, J. F., (2018). Induction of abiotic stress
tolerance in plants by endophytic microbes. Lett. Appl. Microbiol., 66, 268—276.
Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J., (2019). The role of the plant
antioxidant system in drought tolerance. Antioxidants., 8, 94–125.
Li, X., & Christie, P., (2001). Changes in soil solution Zn and pH and uptake of Zn by
arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere., 42, 201–207.