91

Role of Endophytes, Plant Growth Promoting Rhizobacteria

Hashem, A., Allah, E. A., Alqarawi, A. A., Wirth, S., & Egamberdieva, D., (2016). Comparing

symbiotic performance and physiological responses of two soybean cultivars to arbuscular

mycorrhizal fungi under salt stress. Saudi J. Biol. Sci., 26, 38–48.

Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I., (2010). Soil beneficial bacteria and

their role in plant growth promotion: A review. Ann. Microbiol., 60, 579–598.

Hilleary, R., & Gilroy, S., (2018). Systemic signaling in response to wounding and pathogens.

Curr. Opin. Plant Biol., 43, 57–62.

Ilangumaran, G., & Smith, D. L., (2017). Plant growth promoting rhizobacteria in amelioration

of salinity stress: A systems biology perspective. Front. Plant Sci., 8, 1768.

Jaemsaeng, R., Jantasuriyarat, C., & Thamchaipenet, A., (2018). Molecular interaction

of

1-aminocyclopropane-1-carboxylate

deaminase

(ACCD)-producing

endophytic

Streptomyces sp. GMKU 336 towards salt-stress resistance of Oryza sativa L. cv.

KDML105. Sci. Rep., 8, 1950.

Jiang, Q. Y., Zhuo, F., Long, S. H., Zhao, H. D., Yang, D. J., Ye, Z. H., Li, S. S., & Jing, Y.

X., (2016). Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of

Lonicera japonica grown in Cd-added soils? Sci. Rep., 6, 21805.

Jin, H. Q., Liu, H. B., Xie, Y. Y., Zhang, Y. G., Xu, Q. Q., & Mao, L. J., (2017). Effect of the

dark septate endophytic fungus Acrocalymma vagum on heavy metal content in tobacco

leaves. Symbiosis, 74, 89–95.

Joe, M. M., Islam, M. R., Karthikeyan, B., Bradeepa, K., & Sa, T., (2012). Resistance responses

of rice to rice blast fungus after seed treatment with the endophytic Achromobacter

xylosoxidans AUM54 strains. Crop Prot., 42, 141−148.

Kaldorf, M., Kuhn, A., Schröder, W., Hildebrandt, U., & Bothe, H., (1999). Selective element

deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal

fungus. J. Plant. Physiol., 154, 718–728.

Kasim, W. A., Osman, M. E., Omar, M. N., Abd El-Daim, I. A., Bejai, S., & Meijer, J., (2013).

Control of drought stress in wheat using plant growth-promoting bacteria. J. Plant Growth

Regul., 32, 122–130.

Kaya, C., Higgs, D., Kirnak, H., & Tas, I., (2003). Mycorrhizal colonization improves fruit

yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-

watered and water-stressed conditions. Plant. Soil., 253, 287–292.

Kelkar, T. S., & Bhalerao, S. A., (2013). Beneficiary effect of arbuscular mycorrhiza to

Trigonella Foenum-Graceum in contaminated soil by heavy metal. Res. J. Recent Sci., 2,

29–32.

Kim, S. J., Eo, J. K., Lee, E. H., Park, H., & Eom, A. H., (2017). Effects of arbuscular

mycorrhizal fungi and soil conditions on crop plant growth. Mycobiology., 45, 20–24.

Kumar, A., Patel, J. S., Meena, V. S., & Ramteke, P. W., (2019). Plant growth promoting

rhizobacteria: Strategies to improve abiotic stresses under sustainable agriculture, J. Plant

Nutr., 42, 1–15.

Kumar, M., (2013). Crop plants and abiotic stresses. J. Biomol. Res. Ther., 3, 1.

Lata, R., Chowdhury, S., Gond, S. K., & White, J. F., (2018). Induction of abiotic stress

tolerance in plants by endophytic microbes. Lett. Appl. Microbiol., 66, 268—276.

Laxa, M., Liebthal, M., Telman, W., Chibani, K., & Dietz, K. J., (2019). The role of the plant

antioxidant system in drought tolerance. Antioxidants., 8, 94–125.

Li, X., & Christie, P., (2001). Changes in soil solution Zn and pH and uptake of Zn by

arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere., 42, 201–207.